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This paper presents a heuristic optimality criterion algorithm for shape design of fluid flow.
In this algorithm, the lattice Boltzmann method (LBM) is utilized to calculate the flow field
of a fluid domain which is divided into elemental cells. A heuristic optimality criterion is
applied for cells at the solid–fluid interface, i.e. the dynamic pressure for fluid cells and
the viscous stress on their neighboring solid cells. An automatic program is processed step
by step to exchange the positions of solid and fluid cells identified by the optimality crite-
rion, with the objective of decreasing the flow resistance at the constraint of constant fluid
volume. To illustrate the procedure of this algorithm for shape design of fluid flow, two
simple examples are presented: one with fluid flowing through a right angle elbow and
the other through a converging T-junction. Numerical results show that this algorithm
can successfully reduce the total pressure drop of the system, demonstrating its potential
applications in engineering optimal design.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

When fluid flows through a channel or a tube, the friction between fluid and solid wall causes pressure drop or viscous
dissipation. How to effectively reduce this viscous dissipation by proper design of channel shape or flow system configura-
tion, i.e. shape optimization of fluid flow is essential to many engineering applications involving fluid, such as aerodynamic
wing and wing-body configurations [1], fluid distributors [2–4], and air distribution system in a vehicle [5,6]. The detailed
review on shape optimization of fluid flow may be found in some monographs and papers [7–10]. In recent years, a great
deal of effort has been devoted to the development of numerical technique for solving the flow optimization issue. Borrvall
and Petersson [11] first applied the topology optimization well established in solids and structures to the optimal design in
fluid mechanics. They proposed the optimal design of Stokes flow problems by distributing inhomogeneous porous materials
with a spatially varying Darcy permeability tensor and an artificial ‘‘inverse permeability” that is proportional to the elemen-
tal thickness of a two-dimensional channel. This approach is extended by Evgrafov [12] to pure solid and pure flow, and by
Gersborg-Hansen et al. [13] to laminar incompressible Navier–Stokes flows at low Reynolds numbers, higher than that of the
Stokes flow. Evgrafov [14] further proposed to relax the incompressibility constraint, and applied the topology optimization
for slightly compressible Navier–Stokes flows. More recently, Evgrafov and his coworkers [15,16] combined the variation of
the porosity with LBM for topology optimization of low Mach number incompressible viscous flows, which mainly applied
the LBM as an alternative to Navier–Stokes equation solvers. Moos and his coworkers [5,6] proposed a procedure for topol-
ogy optimization of fluid flow, which is mainly based on the principle that the fluid flow always searches the best way under
given constraints in a predefined space by itself. In their algorithm, the areas are responsible for the bulk of pressure loss
. All rights reserved.
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Nomenclature

c particle velocity, LT�1

cs speed of sound, LT�1

Dp pressure drop, L�1MT�2

Nx lattice number in x direction, dimensionless
Ny lattice number in y direction, dimensionless
Re Reynolds number, dimensionless
Reout Reynolds number at outlet, dimensionless
xi lattice weighting factor, dimensionless
u macroscopic velocity, LT�1

l fluid viscosity, L�1MT�1

m kinematic viscosity, L2T�1

q density, L�3M
q0 mean density, L�3M
Win width of inlet, L
Wout width of outlet, L
syx shear stress in x direction, L�1MT�2

sxy shear stress in y direction, L�1MT�2

dx lattice spacing in x direction, L
dy lattice spacing in y direction, L
dt time interval, T
t time step, T
fi particle distribution functions, dimensionless
f eq
i particle equilibrium distribution function, dimensionless
s relaxation time, T
x particle position, L
u velocity in x direction, LT�1

uin velocity of inlet, LT�1

�uout cross-sectional average fluid velocity of outlet, LT�1

�u cross-sectional average fluid velocity, LT�1

t velocity in y direction, LT�1

p pressure of fluid, L�1MT�2

q dynamic pressure of fluid, L�1MT�2

Acronyms
BGK Bhatnagar–Gross–Krook
CA cellular automata
D2Q9 two-dimensional 9-velocity lattice Boltzmann model
D3Q15 three-dimensional 15-velocity lattice Boltzmann model
D3Q19 three-dimensional 19-velocity lattice Boltzmann model
D3Q27 three-dimensional 27-velocity lattice Boltzmann model
EGM entropy generation minimization
LBM lattice Boltzmann method
LGA lattice-gas automata
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within the design space so called ‘‘virtual sand” or ‘‘numerical sand” which is deposited in computational cells with recircu-
lation. Duan et al. [17] applied variational level set method for shape-topology optimization of Navier–Stokes flow, where
the Gateaux shape derivative was used to analyze the sensitivity of the objective function. Similar problem was also treated
by Zhou and Li [18] with the constraint of a specific fluid volume.

Lattice Boltzmann method (LBM) is a relatively new simulation technique for complex fluid domains, which simulates
fluids at a more fundamental, or kinetic level via the discrete Boltzmann equation. Some foundational work of LBM is dis-
cussed in the monographs and papers [19–25]. Compared to traditional numerical schemes based on discretizations of mac-
roscopic continuum equations, the kinetic nature and local dynamics of the LBM make it more adaptable in dealing with
complex boundaries and parallelization of the algorithm. As a result, we envisage applying it as an underlying Navier–Stokes
solver which provides flow field information for our heuristic optimality criterion and the following cells’ position exchang-
ing process. Shape optimization of fluid flow domain is expected by applying this algorithm for reduced pressure drop (re-
duced flow resistance) with constraint of constant void volume for fluid flow. In fact, the LBM was originally derived as an
extension of the Lattice Gas Automata (LGA) which originated from Cellular Automata (CA) method [26]. The theoretical
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basis (‘‘cell” expression) of the LBM corresponds very well to the downstream position exchanging process. That is the reason
why we choose the LBM as the ‘‘pretreatment”.

The outline of this paper is as follows. In Section 2, cellular expression for fluid–solid structures and the dynamical inter-
action at fluid–solid interface are presented. A description of the LBM, the heuristic optimality criterion, and the coupled
algorithm is given as well. Section 3 demonstrates the success of this algorithm for shape design of fluids flowing through
a right angle elbow and a converging T-junction subject to a specific fluid volume constraint. Finally, Section 4 summarizes
some conclusions and presents remarks.

2. Numerical algorithm

Here we give the theoretical background for the numerical algorithm. First we specify our dynamical model for the inter-
action at fluid–solid interface, and then we describe the simulation rules used for our system, i.e., the LBM, the heuristic opti-
mality criterion, and the coupled algorithm.

To simplify the numerical algorithm, following assumptions are made:
– Steady flow pattern; No-slip condition at the wall is applied.
– The simulation is restricted to a two-dimensional domain. The height of the channel is infinite, thus only the friction

between the fluid and the solid walls at both sides are considered.
– The gravity effect of the fluid is neglected.
– The operation condition is isothermal, i.e. neglecting the viscous heating effect.
– Physical properties of solid materials are isotropic and homogeneous; Physical properties of working fluid are constant.

2.1. Cellular expression for fluid–solid structures

As shown in Fig. 1, the simulation domain is uniformly divided into elemental square sub-domains, which are considered
as cells. The solid cells are indicated by black and the fluid cells represented by yellow, respectively. The physical information
of cells on the whole domain is calculated by the LBM.

In fluid phase, we use the D2Q9 model [24] with three speeds and nine velocities on a two-dimensional square lattice
(Fig. 2). The velocities, ci, include eight moving velocities along the links of the square lattice and a zero velocity for the rest
particle. Let fi(x, t) be the distribution functions at x, t with velocity ci, the lattice Boltzmann equation with the BGK collision
approximation [24] can be written as
fiðxþ cidt; t þ dtÞ ¼ fiðx; tÞ �
1
s

fi � f eq
i

� �
; ð1Þ
where f eq
i (i = 0,1, . . . ,8) is the equilibrium distribution function and s is the relaxation time.

For low Mach number flow conditions, the equilibrium distribution function for the D2Q9 model in Eq. (1) can be derived
by a Taylor series 2nd order expansion of the Maxwell–Boltzmann equilibrium distribution, as the following [21]:
Fig. 1. Schematic of the cellular expression for the simulation domain.



Fig. 2. A two-dimensional (2D), 9-velocity D2Q9 lattice model.
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f eq
i ¼ qxi 1þ 3ci � uþ

9
2
ðci � uÞ2 �

3
2

u � u
� �

; ð2Þ
where u is the macroscopic velocity, and xi is the lattice weighting factor that depends on the lattice geometry. For the
square lattice these weights are:
xi ¼
4=9 i ¼ 0;
1=9 i ¼ 1;2;3;4;
1=36 i ¼ 5;6;7;8:

8><
>: ð3Þ
The macroscopic quantities such as mass density and momentum density can then be obtained by evaluating the hydrody-
namic moments of the distribution function fi(x, t) by
qðx; tÞ ¼
X8

i¼0

fiðx; tÞ; ð4Þ

quðx; tÞ ¼
X8

i¼0

cifiðx; tÞ: ð5Þ
For the D2Q9 model, the lattice speed or lattice constant is defined as c = dx/dt, dx and dt are the lattice spacing and the time
step size, respectively. The speed of sound in D2Q9 lattice model is cs ¼ c=

ffiffiffi
3
p

and the equation of state is that of an ideal gas,
p ¼ qc2
s : ð6Þ
Under the low Mach number assumption, the familiar form of incompressible Navier–Stokes equations can be recovered
from the incompressible lattice Boltzmann model via the Chapman–Enskog expansion [23], as the following
1
c2

s

@P
@t
þr � u ¼ 0; ð7Þ

@u
@t
þ u � ru ¼ �rP þ mr2u; ð8Þ
where P = p/q0, the constant q0 is the mean density and the kinematic viscosity
m ¼ ð2s� 1Þ
6

dx2

dt
: ð9Þ
These works guarantee that the Navier–Stokes equation can be obtained at a macroscopic level. We apply the LBM to cal-
culate the physical quantities of microscopic and mesoscopic process in fluid cells.

2.2. Dynamical interaction at fluid–solid interface and heuristic criterion

According to the Newton’s law of viscosity, we can obtain the fundamental relation for fluid shear stress in the form
syx ¼ �l @u
@y
: ð10Þ
Here, the constant l is known as the coefficient of viscosity. Some typical fluid–solid interfaces in two-dimensional simula-
tion are indicated in Fig. 3, the solid cell suffers viscous stress force because of fluid flow. At the wall, the velocity is zero
owing to the no-slip condition for viscous fluid flows. Therefore, the dynamical interaction between a fluid cell and a solid
cell can be written as



Fig. 3. Some typical fluid–solid interfaces in two-dimensional simulation.
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syx ¼ l u
0:5dy

; ð11Þ

sxy ¼ l t
0:5dx

; ð12Þ
where dx and dy are the lattice spacing (dx = dy in the LBM), u and t are velocity in x and y direction, respectively.
In the view point of solid, material and fracture mechanics, the solid cell collapses when it suffers viscous stress greater

than the fracture threshold [27]. Assuming that the physical properties of solid materials are isotropic and homogeneous, the
solid cells suffering larger viscous stress from its neighboring fluid cells will be more likely to crash than those suffering
small viscous stress, similar to the natural phenomenon of fluvial erosion in river basins. As a result, by using the flow field
provided by the LBM we can screen out those solid cells at fluid–solid interface which are liable to perish and vanish due to
larger viscous stress, and will be replaced by fluid cells. For simplicity of implementation, the physical properties of solid
materials presented here are assumed to be isotropic and homogeneous; however, its extension to anisotropic and inhomo-
geneous is in principle feasible.

For the fluid phase, recall that only the volume of the flow domain is constrained. In order to eliminate the ‘‘dead zones” in
the fluid domain so as to effectively make use of a fixed void volume for fluid flow, we choose the dynamic pressure
q ¼ 1

2 qv2
� �

as the heuristic criterion for fluid cells. That is, fluid cells at the fluid–solid interface having lower dynamic pres-
sure are liable to perish and vanish and will be replaced by solid cells. The algorithm proposed by us can then be thought of
as a mimicry of natural behavior in channels where the surface is eroded at the points of maximum shear stress and the sand
is deposited at the points of minimum dynamic pressure.

To realize the mutual replacement of fluid and solid cells with their proper criteria, i.e. dynamic pressure for fluid cells
and viscous stress for solid cells, an automatic procedure is programmed.

2.3. Implementation of the simulation procedure

The simulation procedure is described in detail using the flow chart shown in Fig. 4.

(1) Input the initial data such as the size and initial shape of the simulation domain (solid phase, fluid phase), the specified
boundary conditions (fluid nature, velocity profile, pressure, etc.). The fluid density and kinematic viscosity given in
this paper are q = 1.0 and m = 0.04, respectively. The initial condition is the equilibrium distribution, using a constant
density q0 = 1.0 and zero velocity. The wall boundary condition given in this paper is the bounce-back scheme [28–30],
which is adaptable, robust and easy to implement for fluid flow in complicated geometries.

(2) An exact flow field is calculated by LBM. The steady-state is reached if
P
i

P
jðjuði; j; t þ dtÞ � uði; j; tÞj þ jtði; j; t þ dtÞ � tði; j; tÞjÞP

i

P
jðjuði; j; tÞj þ jtði; j; tÞjÞ

6 TolLBM; ð13Þ
where TolLBM is a tolerance set to 10�8.
(3) At the fluid–solid interface, a number of fluid cells having the lowest dynamic pressure and the same number of solid

cells suffering the largest viscous stress will be screened out, and their positions will be exchanged, thus creating a new
shape. Note that the equal number of the target fluid cells and solid cells is to balance the void volume occupied by fluid
(constant fluid volume constraint). In strict sense, only one couple of cells should be exchanged at each step. However,
that will by far lengthen the simulation time thus not highly efficient. Therefore, a certain number of fluid–solid cell



Fig. 4. Flow chart of the algorithm.
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couples are exchanged at each step. We introduce here a control parameter called the exchange rate, defined as the
ratio of the number of exchanging cells to the total number of cells at the fluid–solid interface. Within the allowable
simulation time range, the value of the exchange rate should be necessarily small to encourage convergence of the
method. In the presented algorithm, the value of the exchange rate for each step is largely less than 0.05, and excessive
exchange rate maybe lead to the failure of the algorithm. The exchange rate given in this paper is 0.04. Note that even
low exchange number would be better in some symmetry cases (T-junction for example) to ensure the symmetry of the
fluid domain.

(4) Reinitialize the basic properties of fluid flow and boundary for the new shape. The whole cells are again initialized by
the equilibrium distribution using a constant density q0 = 1.0, and zero velocity. Recalculate the exact flow field by
LBM.
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(5) Check the stable tolerance of the algorithm. If the tolerance is satisfied, then the heuristic procedure is terminated, and
the results are exported. If not so, the procedure goes back to Step 3 for recurrence.
The result is considered to be stable when the pressure drop Dp across the system tends to extremum. Owing to the
difficulty of absolute convergence toward a specific static pattern, n-step average of Dp is considered as convergent
factor, and the result is convergent if
1
ndt

Ptþndt
i¼t Dpi � 1

ndt

Pt
i¼t�ndtDpi

��� ���
1

ndt

Pt
i¼t�ndtDpi

�� �� ¼
Ptþndt

i¼t Dpi �
Pt

i¼t�ndtDpi

��� ���Pt
i¼t�ndtDpi

�� �� 6 Tol; ð14Þ

where Tol is a tolerance set to 10�6 and n the length of average step interval, usually from 5 to 10.
3. Simulation and results

In order to test the validity of this algorithm for shape design of fluid flow, we consider two simple examples, both re-
stricted in a two-dimensional domain with Nx � Ny lattice cells.

3.1. Flow through a right angle elbow

Fluid flowing through a bend or curve in a pipe always induces an energy loss larger than the simple straight-pipe skin
friction loss, due to singular effect from the centripetal acceleration. Fig. 5 shows the arrangement of simulation domain,
which is divided into 200 � 200 cells. The width of both inlet and outlet is Win = Wout = 40 cells. The parabolic velocity pro-
files at both inlet and outlet are imposed. The cross-sectional average fluid velocities of both inlet and outlet are
�u ¼ 0:0000267;0:02;0:04 and 0.08, the corresponding Reynolds numbers Re ¼ �uWin

m ¼ 0:0267;20;40 and 80.
Fig. 6 shows the evolution of shape and flow field as a function of the evolution time steps for Re = 40. With the algorithm

proceeds, the flow singularity (right angle) gradually despairs and becomes smoother, implying that the singularity effect is
smaller and smaller. Finally, it reaches a relative steady-state, i.e. the shape of fluid flow almost does not change as time step
increases. It can be observed that the streamline of velocity profile is well-kept at the final shape so that the flow turns
slowly and continuously rather than abruptly.

The pressure drop of the system as a function of evolution time step is indicated in Fig. 7, where the objective values are
given in lattice units. The total pressure drop of the initial shape is 0.0894, that of the final shape is 0.0279, thus the total
pressure drop of the final shape is reduced by 68.8% compared with that of the initial shape. It can be observed that the pres-
sure drop globally decreases when the shape of fluid flow evolves with increasing time step, and tends to be stable after hav-
ing been reduced to a certain level. However, the local fluctuation characteristics of pressure drop occur during the evolution,
which can be understood as reflections of spatio-temporal coupling of the flow behaviors to realize the compromise between
vanishing solid cells and vanishing fluid cells [31].

From the view point of fluid mechanics, the pressure drop in a pipe is caused by skin friction and singularity effect,
namely regular pressure drop and singular pressure drop, respectively. The total pressure drop is the sum of the two parts.
The simulation results show that the total pressure drop is decreased 68.8% by reducing the flow singularity effect, implying
Fig. 5. Initial design domain for flow through a two-dimensional right angle elbow.



Fig. 6. Shape and flow field evolution from first to the 401st step for Re = 40 flow through a right angle elbow.

Fig. 7. The evolution of total pressure drop with time steps for Re = 40 flow through a right angle elbow.

8038 L. Wang et al. / Journal of Computational Physics 229 (2010) 8031–8044
that the singular pressure drop is dominant even under very low Reynolds number condition. This observation is consistent
with the results reported by Tondeur and his coworkers [2,32]. However, it should be noted that the percentage of improve-
ment is rather relative to some extent since it depends strongly on the choice of the initial shape.

The number of LBM iterations taken till the convergence criterion with time steps is shown in Fig. 8. It can be observed
that the number of LBM iterations depends on the shape of fluid flow. The number of LBM iterations fluctuatly increases



Fig. 8. The evolution of the number of LBM iterations with time steps for Re = 40 flow through a right angle elbow.
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when the shape of fluid flow evolves with increasing time step, and tends to be stable after having been increased to a certain
level. The average number of LBM iterations is approximately 30,500 once the final shape has been found.

In the mean time, it can also be observed from Fig. 6 that ‘‘dead zones” in the flow domain are largely eliminated at the
final shape. One important feature related to this is the narrow residence time distribution which is essential for chemical
reactors and fluid mixers for example. Fig. 9 shows the probability density as a function of fluid speed in the flow domain.
Compared to the initial shape, a more narrow fluid speed distribution is obtained at the final shape, which shows that the
flow field becomes more uniform.

We attempt to verify the present heuristic algorithm through comparison with several established topology optimi-
zation for Stokes flow [11] and channel flow [13,15,16], which will demonstrate the algorithm’s ability for accurate
shape design in fluid flow. Fig. 10 shows the final shapes at various Reynolds numbers (Re = 0.0267, 20, 40 and 80).
As shown in Fig. 10(a), the right angle elbow finally evolves into a straight-pipe at Re = 0.0267 Stokes flow, which is



Fig. 10. Final shapes at various Reynolds for flow through a right angle elbow.

Fig. 11. Shape and flow field evolution from first to the 401st step for Re = 40 flow through a zigzag elbow.
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close to the optimal results of Borrvall and Petersson [11]. In addition, Fig. 10 illustrates the influence of the Reynolds
numbers on the final shapes. The larger the Reynolds number is (but restricted to pure laminar flow condition), the
more curved in turn a corner of the pipe.

In order to investigate the influence of the initial shape, a comparative test is carried out, as shown in Fig. 11. Compared to
the right angle elbow case, all the boundary conditions and physical properties for fluid flow are equal except the initial
shape (zigzag in this case). It can be observed that by applying our algorithm, nearly (but not exactly) the same final con-
figuration can be obtained, implying that our algorithm may not be sensitive to the choice of the initial shape in the current
case investigated.

Furthermore, to assess the scalability/practicality of the present algorithm for lattice of realistic sizes, a comparative test
regarding the ‘‘resolution” of the simulated domain has been carried out. We have investigated three lattice sizes (100 � 100;
200 � 200; 400 � 400) of the elbow case, while keeping other numerical parameters identical. Fig. 12 shows that almost
identical final shapes are obtained, which suggests that the resolution of the flow domain has little influence on the final



Fig. 12. The final shape of three lattice sizes for Re = 40 flow through a right angle elbow.
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shape of the elbow. One feature that may be observed by comparing these pictures is that the boundary of the flow domain
becomes smoother when the ‘‘resolution” increases. Another feature is that the small size converges much faster than the
large size, i.e. about 200 iterations for 100 � 100 case, 380 iterations for 200 � 200 case and more than 550 iterations for
400 � 400 case. So as to the number of LBM iterations per optimization iteration change, the difference is also significant:
less than 8000 for 100 � 100 case and about 45,000 for 400 � 400 case.

To further improve the efficiency of our algorithm, we may consider using a ‘‘multi-scale modeling” technique. That is,
first calculate a rough shape using small lattice size and then progressively refine the flow domain in order to reach the
acceptable resolution. This will be the subject of our future work.

3.2. T-junction flow

The initial profile of a T-junction merging flow which is widely used in engineering is shown in Fig. 1. The simulation do-
main is divided into 201 � 202 cells. The width of inlet boundary Win is 35 cells and the width of outlet boundary Wout is 53
Fig. 13. Shape and flow field evolution from first to the 151st step for Reout = 17.5 T-junction flow.



Fig. 14. The evolution of the total pressure drop with time steps for Reout = 17.5 T-junction flow.

Fig. 15. Final shapes at various Reynolds for T-junction flow.
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cells. Both right and left inlets have identical constant velocity profiles, but with opposite directions. A parabolic velocity
profile at the outlet is imposed. The cross-sectional average fluid velocities of the outlet are �uout ¼ 0:0132; 0:0264 and
0.0528, the corresponding outlet Reynolds numbers Reout ¼ �uout Wout

m ¼ 17:5;35 and 70. The constant inlet velocities are
uin = 0.01, 0.02 and 0.04, respectively.

Fig. 13 shows the shape evolution of the T-junction and the corresponding flow field as a function of the evolution time
steps. It can be observed that the two right angels’ corners gradually disappear and become circular transitions, while fluid
cells having low dynamic pressure where two fluids join up are replaced by solid cells. Thus, the dead zones in the T-junction
are largely eliminated, i.e. the void volume of the junction for fluid flow is more effectively ‘‘used”. Finally, the T-junction
evolves into a Y shape junction with natural and developed flow velocity field, which also implies that the mean residence
time distribution is more uniform.

Fig. 14 reports the total pressure drop between the inlets and the outlet as a function of the evolution time step. It can be
observed that the total pressure drop of the initial shape is 0.176, that of the final shape is 0.042, and the total pressure drop
decreases when the algorithm proceeds. The total pressure drop of the final shape is reduced by 76.1% compared with that of
the initial shape.

Fig. 15 illustrates the influence of the Reynolds numbers on the final shapes for T-junction flow. Based on these results, it
can be seen that the final shapes of T-junction are similar at low Reynolds numbers. In Fig. 16 we plot the wall boundaries for
Reout = 17.5, 35 and 70. The observed slight decrease of the curvature at the two corners and top solid boundary gradually
descends for larger Reynolds numbers.



Fig. 16. Comparison the final outlines of T-junction at Reout = 17.5, 35 and 70.
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4. Discussion and conclusions

A heuristic optimality criterion algorithm for shape design of fluid flow based on LBM is proposed in this paper. With con-
stant void volume constraint, the algorithm mainly exchanges the positions of solid cells suffering high viscous stress with
fluid cells having low dynamic pressure at fluid–solid interface. Step by step, the shape of fluid flow evolves toward the final
shape with reduced pressure drop. Two simple examples are illustrated: one is a right angle elbow and the other a converg-
ing T-junction. Encouraging results are obtained, illustrating the validity of algorithm and its promising application in engi-
neering field dealing with fluid problems.

The objective of the present study is to minimize the pressure drop under the constraint of constant void volume for fluid
flow. In fact, the minimization of pressure drop is equal to the minimization of viscous dissipation, or the entropy generation
under isothermal condition, thus our method can also be considered as Entropy Generation Minimization (EGM) [33] from
view point of thermodynamics.

The heuristic optimality criteria chosen in this algorithm are the viscous stress for solid cells and the dynamic pressure for
fluid cells, corresponding to the physical mechanism at fluid–solid interface. In fact, considering a mighty wave crashing on a
sandy shore as a typical fluid–solid interaction example, the solid elements are more likely to collapse when they suffer high
viscous stress, beyond the fracture threshed, thus will be eroded by fluids. Meanwhile, the fluids having small velocity (low
dynamic pressure) are more likely to be occupied by solid. That’s how the shape of a river evolves subject to its local and
global constraints in nature. Indeed, other optimization criteria may also be valid for dealing with specific problems under
specific conditions.

Two simple examples illustrated in this paper are under low Reynolds number, incompressible flow conditions (pure lam-
inar flow). This is because of the assumption of low Mach number in current D2Q9 model of LBM. However, the present algo-
rithm can also be extended to tackle more complicated flow problems such as developed turbulent flow or compressible
flow, by selecting and integrating proper models. This is one direction of our future work.

For a ‘‘closer to nature” analysis, a three-dimensional simulation is necessary for comparing the effects of different chan-
nel section geometries on the optimization results. For simplicity of implementation, the current simulation scheme lies in
the restriction of two-dimensional surface, the height of channel is assumed infinite. However, its extension to three-dimen-
sions is in principle straightforward. This is technically feasible by the three-dimensional lattice Boltzmann models (D3Q15,
D3Q19 and D3Q27) [34,35], i.e. by dividing a volume space into a large number of elemental sub-cubes and using a modified
macroscopic velocity expression.

It should be clarified that the solution generated by the present heuristic algorithm does not rigorously lead to a minimal
flow resistance (pressure drop), since the optimality of the designs can not be properly assessed. It should also be noted that
the proposed algorithm is unable to generate new boundaries, unless two existing boundaries accidentally merge during the
optimization process, which could be considered as a drawback when compared with topology optimization.

Even with these limitations, the present heuristic algorithm avoids the need for costly sensitivity analysis required by
traditional optimization and the present results seem reasonable and encouraging. Our next step is to apply this algorithm
for the shape designs of more complex fluid flow structures, for example the multi-scale fluid distributors/collectors [2,4,32].
Experimental validation is also expected for this algorithm.

One assumption used in the present algorithm is that the whole operation is carried out under isothermal condition. This
assumption is totally reasonable for our cases examined in this study, but may not be valid when physical properties of
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working fluid are temperature dependent. Furthermore, when we design the fluid flow structures for actual engineering
applications, i.e., heat exchangers or solar collectors, the thermal aspect is obviously not negligible. Therefore, it concerns
the design and optimization of fluid flow structures expecting optimal thermal performance with minimal flow resistance
simultaneously. In that case, other heuristic optimality criteria should be introduced, such as the local heat transfer coeffi-
cient or Nusselt number for fluid cells. In fact, we have had some successful attempts in dealing with pure heat conduction
problem by using similar ‘‘position exchange” principle [36,37]. Developing a conjugate algorithm for both fluid flow and
heat transfer to tackle the convective heat transfer problem is surely another direction of our future work.
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